Serum α-1 Antitrypsin (AAT) antagonizes intrinsic apoptosis induction in neutrophils from patients with systemic inflammatory response syndrome
نویسندگان
چکیده
Excessive neutrophil activation accompanied by delayed apoptotic cell death in inflammatory conditions causes progressive damage of cells and tissues, leading to life-threatening multiple organ dysfunction syndrome. Previous work suggested that circulating serum factors during inflammation are critically involved in the suppression of neutrophil cell death although the identity of these antiapoptotic mediators remained elusive. In this study, we identified the acute phase protein α-1 Antitrypsin (AAT) as a potent suppressor of staurosporine (STS)-induced apoptosis in human neutrophils through a mechanism implicating caspases-independent pathways. We show here that serum levels of AAT, potentially in part released by stimulated neutrophils, are markedly elevated in major trauma patients suffering from systemic inflammatory response syndrome (SIRS). Notably, AAT depletion from serum increased sensitivity of human neutrophils for STS-induced cell death. In fact, AAT was demonstrated to confer intrinsic apoptosis resistance by preventing PKC/Akt inactivation and subsequent proteasomal degradation of antiapoptotic Mcl-1 protein in response to STS treatment. Neither MAP kinase ERK1/2 nor caspases were found to be involved in AAT-triggered antiapoptotic pathways in neutrophils. In summary, these results establish a novel pivotal role of circulating AAT in mediating survival by antagonizing the proapoptotic action of the PKC inhibitor STS and should be considered for AAT augmentation therapies in future.
منابع مشابه
Mcl-1-mediated impairment of the intrinsic apoptosis pathway in circulating neutrophils from critically ill patients can be overcome by Fas stimulation.
The systemic inflammatory response syndrome and subsequent organ failure are mainly driven by activated neutrophils with prolonged life span, which is believed to be due to apoptosis resistance. However, detailed underlying mechanisms leading to neutrophil apoptosis resistance are largely unknown, and possible therapeutic options to overcome this resistance do not exist. Here we report that act...
متن کاملα-1 Antitrypsin regulates human neutrophil chemotaxis induced by soluble immune complexes and IL-8.
Hereditary deficiency of the protein α-1 antitrypsin (AAT) causes a chronic lung disease in humans that is characterized by excessive mobilization of neutrophils into the lung. However, the reason for the increased neutrophil burden has not been fully elucidated. In this study we have demonstrated using human neutrophils that serum AAT coordinates both CXCR1- and soluble immune complex (sIC) re...
متن کاملAnti-inflammatory and immunomodulatory properties of α1-antitrypsin without inhibition of elastase.
The rationale of α1-antitrypsin (AAT) augmentation therapy to treat progressive emphysema in AAT-deficient patients is based on inhibition of neutrophil elastase; however, the benefit of this treatment remains unclear. Here we show that clinical grade AAT (with elastase inhibitory activity) and a recombinant form of AAT (rAAT) without anti-elastase activity reduces lung inflammatory responses t...
متن کاملThe effects of weekly augmentation therapy in patients with PiZZ α1-antitrypsin deficiency
BACKGROUND The major concept behind augmentation therapy with human α(1)-antitrypsin (AAT) is to raise the levels of AAT in patients with protease inhibitor phenotype ZZ (Glu342Lys)-inherited AAT deficiency and to protect lung tissues from proteolysis and progression of emphysema. OBJECTIVE To evaluate the short-term effects of augmentation therapy (Prolastin) on plasma levels of AAT, C-react...
متن کاملThe BLT1 Inhibitory Function of α-1 Antitrypsin Augmentation Therapy Disrupts Leukotriene B4 Neutrophil Signaling.
Leukotriene B4 (LTB4) contributes to many inflammatory diseases, including genetic and nongenetic forms of chronic obstructive pulmonary disease. α-1 Antitrypsin (AAT) deficiency (AATD) is characterized by destruction of lung parenchyma and development of emphysema, caused by low AAT levels and a high neutrophil burden in the airways of affected individuals. In this study we assessed whether AA...
متن کامل